版权声明:本文为博主原创文章,转载请注明出处:http://blog.jerkybible.com/2017/01/18/LeetCode-454-4Sum-II/
访问原文「LeetCode 454. 4Sum II」
题目要求
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
>
Input:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]Output:
2Explanation:
The two tuples are:
- (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
- (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
题意解析
存在四个数列,从各个数列中取1个数出来,当这些数的和为0是算一组,求一共有多少组这样的数。
解法分析
这道题充分利用HashMap,只需要O(n2)的时间复杂度即可。
解题代码
|
|